Prof. Dr. Peter Koepke, Dr. Philipp Schlicht Problem sheet 8

Problem 29 (6 Points). Suppose that (P, \leq_P) and (Q, \leq_Q) are transitive reflexive relations (also called *weak partial orders, quasiorders, or preorders*). A *Galois-Tukey reduction from* P to Q is a pair of functions $\phi: P \to Q, \phi^*: Q \to P$ such that

$$\forall p \in P \; \forall q \in Q \; (\phi(p) \leq_Q q \to p \leq_P \phi^*(q)).$$

Suppose that \mathcal{I} and \mathcal{J} are ideals such that there is a Galois-Tukey reduction from (\mathcal{I}, \subseteq) to (\mathcal{J}, \subseteq) . Prove the following statements.

- (a) $\operatorname{add}(\mathcal{I}) \geq \operatorname{add}(\mathcal{J}).$
- (b) $\operatorname{cof}(\mathcal{I}) \leq \operatorname{cof}(\mathcal{J}).$
- (c) Suppose that D is a cofinal subset of P and and that E is a cofinal subset of Q. If there is a Galois-Tukey reduction from $(D, \leq_P \cap (D \times D))$ to $(E, \leq_Q \cap (E \times E))$, then there is a Galois-Tukey reduction from (P, \leq_P) to (Q, \leq_Q) .

Problem 30 (8 Points). If $f \in {}^{\omega}\omega$, let $f'(n) = \max\{f(i) \mid i \leq n\} + 1$ and $\phi(f) = \{x \in {}^{\omega}\omega \mid x \leq {}^{*}f'\}$. Now suppose that $F_0 \subseteq F_1 \subseteq ...$ is a sequence of nowhere dense closed subsets of ${}^{\omega}\omega$ and $F = \bigcup_{i \in \omega} F_i$. We define $(k_n, s_n)_{n \in \omega}$ by induction. Let $k_0 = 0$. If k_n is defined, choose $s_n \in {}^{<\omega}\omega$ such that

$$\forall t \in {}^{\leq k_n} k_n \; \forall i \leq n \; N_{t \frown s_n} \cap F_i = \emptyset.$$

Let

$$k_{n+1} = k_n + |s_n| + \max(\operatorname{range}(s_n)) + 1.$$

and

$$\phi^*(F) = \max(\operatorname{range}(s_n)).$$

- (a) Show that $\phi(f)$ is a meager subset of ${}^{\omega}\omega$ for all $f \in {}^{\omega}\omega$.
- (b) Suppose that $f \in {}^{\omega}\omega$ and $f \not\leq {}^{*}\phi^{*}(F)$. Suppose that $Z \subseteq \omega$ is infinite with $f(n) > \phi^{*}(F)(n)$ for all $n \in Z$ and that $(z_{i})_{i \in \omega}$ is the order preserving enumeration of Z. Let

$$x = 0^{\circ} 0^{\circ} \dots 0^{\circ} s_{z_0}^{\circ} 0^{\circ} \dots 0^{\circ} s_{z_1} \dots$$

such that s_{z_i} begins in place $k_{z_i} + 1$ for all $i \in \omega$. Show that $x \in \phi(f) \setminus F$. (c) Show that $\operatorname{add}(\mathcal{M}) \leq \mathfrak{b}$.

Problem 31 (6 Points). A forcing $(P, \leq_P, 1_P)$ is called σ -linked if there is a function $f: P \to \omega$ such that $p, q \in P$ are compatible if f(p) = f(q).

Let μ denote the unique measure on the Borel subsets of ${}^{\omega}2$ with $\mu(N_t) = 2^{-|t|}$ for all $t \in {}^{<\omega}2$. Let P denote the weak partial order consisting of the Borel subset Bof ${}^{\omega}2$ with $\mu(B) > 0$, ordered by reverse inclusion. Let

 $C_t = \{ B \subseteq {}^{\omega}2 \mid B \text{ is Borel and } \mu(N_t \setminus B) < \frac{1}{2}\mu(N_t) \}.$

for $t \in {}^{<\omega}2$. Every Borel subset of ${}^{\omega}2$ with positive measure is an element of C_t for some $t \in {}^{<\omega}2$ by the Lebesgue density theorem.

- (a) Show all $A, B \in C_t$ are compatible for any $t \in {}^{<\omega}2$. Conclude that P is σ -linked.
- (b) Suppose that κ is a cardinal and P_{α} is a σ -linked forcing for all $\alpha < \kappa$. Show that the finite support product $\prod_{\alpha < \kappa} P_{\alpha}$ is c.c.c.