Models of Set Theory II - Winter 2013

Prof. Dr. Peter Koepke, Dr. Philipp Schlicht Problem sheet 8

Problem 29 (6 Points). Suppose that $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ are transitive reflexive relations (also called weak partial orders, quasiorders, or preorders). A Galois-Tukey reduction from P to Q is a pair of functions $\phi: P \rightarrow Q, \phi^{*}: Q \rightarrow P$ such that

$$
\forall p \in P \forall q \in Q\left(\phi(p) \leq_{Q} q \rightarrow p \leq_{P} \phi^{*}(q)\right) .
$$

Suppose that \mathcal{I} and \mathcal{J} are ideals such that there is a Galois-Tukey reduction from (\mathcal{I}, \subseteq) to (\mathcal{J}, \subseteq). Prove the following statements.
(a) $\operatorname{add}(\mathcal{I}) \geq \operatorname{add}(\mathcal{J})$.
(b) $\operatorname{cof}(\mathcal{I}) \leq \operatorname{cof}(\mathcal{J})$.
(c) Suppose that D is a cofinal subset of P and and that E is a cofinal subset of Q. If there is a Galois-Tukey reduction from $\left(D, \leq_{P} \cap(D \times D)\right)$ to $\left(E, \leq_{Q} \cap(E \times E)\right)$, then there is a Galois-Tukey reduction from $\left(P, \leq_{P}\right)$ to $\left(Q, \leq_{Q}\right)$.

Problem 30 (8 Points). If $f \in{ }^{\omega} \omega$, let $f^{\prime}(n)=\max \{f(i) \mid i \leq n\}+1$ and $\phi(f)=\left\{x \in{ }^{\omega} \omega \mid x \leq^{*} f^{\prime}\right\}$. Now suppose that $F_{0} \subseteq F_{1} \subseteq \ldots$ is a sequence of nowhere dense closed subsets of ${ }^{\omega} \omega$ and $F=\bigcup_{i \in \omega} F_{i}$. We define $\left(k_{n}, s_{n}\right)_{n \in \omega}$ by induction. Let $k_{0}=0$. If k_{n} is defined, choose $s_{n} \in{ }^{<\omega} \omega$ such that

$$
\forall t \in \leq k_{n} k_{n} \forall i \leq n N_{t \sim s_{n}} \cap F_{i}=\emptyset
$$

Let

$$
k_{n+1}=k_{n}+\left|s_{n}\right|+\max \left(\operatorname{range}\left(s_{n}\right)\right)+1 .
$$

and

$$
\phi^{*}(F)=\max \left(\operatorname{range}\left(s_{n}\right)\right) .
$$

(a) Show that $\phi(f)$ is a meager subset of ${ }^{\omega} \omega$ for all $f \in{ }^{\omega} \omega$.
(b) Suppose that $f \in{ }^{\omega} \omega$ and $f \not \mathbb{Z}^{*} \phi^{*}(F)$. Suppose that $Z \subseteq \omega$ is infinite with $f(n)>\phi^{*}(F)(n)$ for all $n \in Z$ and that $\left(z_{i}\right)_{i \in \omega}$ is the order preserving enumeration of Z. Let

$$
x=0^{\wedge} 0^{\wedge} \ldots 0^{\wedge} s_{z_{0}}^{\wedge} 0^{\wedge} \ldots 0^{\wedge} s_{z_{1}} \ldots
$$

such that $s_{z_{i}}$ begins in place $k_{z_{i}}+1$ for all $i \in \omega$. Show that $x \in \phi(f) \backslash F$.
(c) Show that $\operatorname{add}(\mathcal{M}) \leq \mathfrak{b}$.

Problem 31 (6 Points). A forcing $\left(P, \leq_{P}, 1_{P}\right)$ is called σ-linked if there is a function $f: P \rightarrow \omega$ such that $p, q \in P$ are compatible if $f(p)=f(q)$.

Let μ denote the unique measure on the Borel subsets of ${ }^{\omega} 2$ with $\mu\left(N_{t}\right)=2^{-|t|}$ for all $t \in{ }^{<\omega} 2$. Let P denote the weak partial order consisting of the Borel subset B of ${ }^{\omega} 2$ with $\mu(B)>0$, ordered by reverse inclusion. Let

$$
C_{t}=\left\{B \subseteq{ }^{\omega} 2 \mid B \text { is Borel and } \mu\left(N_{t} \backslash B\right)<\frac{1}{2} \mu\left(N_{t}\right)\right\}
$$

for $t \in{ }^{<\omega} 2$. Every Borel subset of ${ }^{\omega} 2$ with positive measure is an element of C_{t} for some $t \in{ }^{<\omega} 2$ by the Lebesgue density theorem.
(a) Show all $A, B \in C_{t}$ are compatible for any $t \in{ }^{<\omega} 2$. Conclude that P is σ-linked.
(b) Suppose that κ is a cardinal and P_{α} is a σ-linked forcing for all $\alpha<\kappa$. Show that the finite support product $\prod_{\alpha<\kappa} P_{\alpha}$ is c.c.c.

